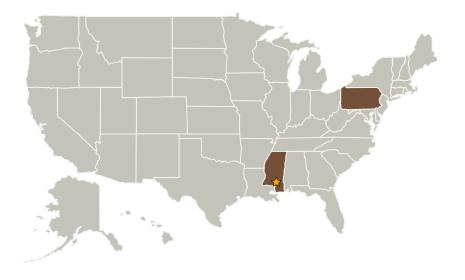
Small Business Innovation Research/Small Business Tech Transfer

Simulations of Unsteady Effects and Dynamic Responses in Complex Valve Systems, Phase I



Completed Technology Project (2004 - 2005)

Project Introduction

CFD based analyses are playing an increasingly important role in supporting experimental testing of rocket propulsion systems. The focus of this proposal is towards identifying and characterizing flow induced instabilities in the experimental test facility. Computational simulations will be carried out with advanced turbulence modeling extensions to the hybrid unstructured framework that has been previously shown to accurately and efficiently predict steady flowfields in complex valve configurations used at SSC. The computational framework will be comprehensive to include instabilities ranging from turbulent pressure fluctuations due to vortex shedding in bends and elbows of the piping system to large scale fluctuations due to collapse of vapor cavities in flow control elements such as venturis. Furthermore, the development in this proposal will include prediction of system response such as amplification and attenuation of dominant instability modes from coupling between components. In Phase II of the proposal development will focus on fluid structure interaction, structural vibrations and resonance. This will greatly enhance the current CFD technology utilized for performance analyses of valve and feed based systems and improve the ability to exert flow control, gauge system response, regulate pressure and suppress instabilities in rocket propulsion test facilities.

Primary U.S. Work Locations and Key Partners

Simulations of Unsteady Effects and Dynamic Responses in Complex Valve Systems, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Stennis Space Center (SSC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Simulations of Unsteady Effects and Dynamic Responses in Complex Valve Systems, Phase I

Completed Technology Project (2004 - 2005)

Organizations Performing Work	Role	Туре	Location
★Stennis Space Center(SSC)	Lead Organization	NASA Center	Stennis Space Center, Mississippi
CRAFT Tech - Combustion Research and Flow Technology	Supporting Organization	Industry	Pipersville, Pennsylvania

Primary U.S. Work Locations	
Mississippi	Pennsylvania

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Vineet Ahuja

Technology Areas

Primary:

TX15 Flight Vehicle Systems
□ TX15.1 Aerosciences
□ TX15.1.3 Aeroelasticity

